Deciding Universality of ptNFAs is PSpace-Complete

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

An automaton is partially ordered if the only cycles in its transition diagram are self-loops. We study the universality problem for ptNFAs, a class of partially ordered NFAs recognizing piecewise testable languages. The universality problem asks if an automaton accepts all words over its alphabet. Deciding universality for both NFAs and partially ordered NFAs is PSpace-complete. For ptNFAs, the complexity drops to coNP-complete if the alphabet is fixed but is open if the alphabet may grow. We show, using a novel and nontrivial construction, that the problem is PSpace-complete if the alphabet may grow polynomially.

Details

OriginalspracheEnglisch
TitelSOFSEM 2018: Theory and Practice of Computer Science
Redakteure/-innenA Min Tjoa, Ladjel Bellatreche, Stefan Biffl, Jan van Leeuwen, Jiří Wiedermann
Seiten413–427
ISBN (elektronisch)978-3-319-73117-9
PublikationsstatusVeröffentlicht - 2018
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band10706
ISSN0302-9743

Externe IDs

Scopus 85041840489