Decidable (Ac)counting with Parikh and Muller: Adding Presburger Arithmetic to Monadic Second-Order Logic over Tree-Interpretable Structures

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

We propose ωMSO∞∞BAPA, an expressive logic for describing countable structures, which subsumes and transcends both Counting Monadic Second-Order Logic (CMSO) and Boolean Algebra with Presburger Arithmetic (BAPA). We show that satisfiability of ωMSO∞∞BAPA is decidable over the class of labeled infinite binary trees, whereas it becomes undecidable even for a rather mild relaxations. The decidability result is established by an elaborate multi-step transformation into a particular normal form, followed by the deployment of Parikh-Muller Tree Automata, a novel kind of automaton for infinite labeled binary trees, integrating and generalizing both Muller and Parikh automata while still exhibiting a decidable (in fact PSpace-complete) emptiness problem. By means of MSO-interpretations, we lift the decidability result to all tree-interpretable classes of structures, including the classes of finite/countable structures of bounded treewidth/cliquewidth/partitionwidth. We generalize the result further by showing that decidability is even preserved when coupling width-restricted ωMSO∞∞BAPA with width-unrestricted two-variable logic with advanced counting. A final showcase demonstrates how our results can be leveraged to harvest decidability results for expressive µ-calculi extended by global Presburger constraints.

Details

OriginalspracheEnglisch
Titel32nd EACSL Annual Conference on Computer Science Logic, CSL 2024
Redakteure/-innenAniello Murano, Alexandra Silva
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (elektronisch)978-3-95977-310-2
PublikationsstatusVeröffentlicht - Feb. 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheLeibniz International Proceedings in Informatics, LIPIcs
Band288
ISSN1868-8969

Konferenz

Titel32nd EACSL Annual Conference on Computer Science Logic
KurztitelCSL 2024
Veranstaltungsnummer32
Dauer19 - 23 Februar 2024
Webseite
OrtCentro Congressi Federico II
StadtNaples
LandItalien

Schlagworte

Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete

Schlagwörter

  • BAPA, decidability, MSO, MSO-interpretations, Parikh-Muller tree automata