Decidability of Quasi-Dense Modal Logics

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The decidability of axiomatic extensions of the modal logic K with modal reduction principles, i.e. axioms of the form ⋄ kp → ⋄np, has remained a long-standing open problem. In this paper, we make significant progress toward solving this problem and show that decidability holds for a large subclass of these logics, namely, for quasi-dense logics. Such logics are extensions of K with modal reduction axioms such that 0 < k < n (dubbed quasi-density axioms). To prove decidability, we define novel proof systems for quasi-dense logics consisting of disjunctive existential rules, which are first-order formulae typically used to specify ontologies in the context of database theory. We show that such proof systems can be used to generate proofs and models of modal formulae, and provide an intricate model-theoretic argument showing that such generated models can be encoded as finite objects called templates. By enumerating templates of bound size, we obtain an ExpSpace decision procedure as a consequence.

Details

OriginalspracheEnglisch
TitelProceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2024)
Herausgeber (Verlag)ACM Press
ISBN (elektronisch)979-8-4007-0660-8
PublikationsstatusVeröffentlicht - 8 Juli 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-3214-0828/work/199216616
Scopus 85199026403

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Kripke model, chase, decidability, existential rule, modal logic, modal reduction principle, model theory, quasi-density axiom