Data-driven, Image-based Flow Regime Classification for Stirred Aerated Tanks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Monitoring and optimization of flow regimes in aerated stirred tanks is crucially important for process efficiency and product quality. To date, experimentally generated flow maps and correlations are mostly used to classify flow regimes. However, such an approach is highly limited in terms of scalability and transferability. We propose a model for a soft sensor to classify flow regimes of aerated stirred tanks based only on image data. To select an architecture for the model, we compared various modern architectures including LeNet, VGG16, MobileNetV2, Dense121. Of these, LeNet-5 and custom CNN show the best performance. Furthermore, we tested how disturbances of process and light conditions, and the fill level in the reactor affect the classification performance.
Details
Titel in Übersetzung | Daten-getriebene, bildbasierte Klassifikation von Strömungsregimes in den begasten Bioreaktoren |
---|
Originalsprache | Englisch |
---|---|
Titel | The 32nd European Symposium on Computer Aided Process Engineering |
Band | 51 |
Publikationsstatus | Veröffentlicht - Juni 2022 |
Peer-Review-Status | Ja |
Publikationsreihe
Titel in Übersetzung | Daten-getriebene, bildbasierte Klassifikation von Strömungsregimes in den begasten Bioreaktoren |
---|
Reihe | Computer aided chemical engineering |
---|---|
ISSN | 1570-7946 |
Externe IDs
ORCID | /0000-0001-5165-4459/work/142248298 |
---|