Data-driven and production-oriented tendering design using artificial intelligence
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Construction projects are facing an increase in requirements, making requirement management labour intense. Therefore, this research project explores possibilities to automate the requirement analysis in the bidding phase and link these requirements to verifications in the production phase. The first part of the research targets the requirement analysis and applies natural language processing techniques for automation possibilities. The second part of the research explores production data as a data-driven verification method and how the data can be used in knowledge feedback loops. The results show that applying natural language processing techniques for analysing construction project requirements is a possible step towards systematic requirements management. Furthermore, production data can be used as a knowledge base for quality improvement in construction companies.
Details
Originalsprache | Englisch |
---|---|
Titel | IABSE Symposium Manchester 2024: Construction's Role for a World in Emergency |
Herausgeber (Verlag) | International Association for Bridge and Structural Engineering (IABSE), Zürich |
Seiten | 107-114 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9783857482045 |
Publikationsstatus | Veröffentlicht - 2024 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | IABSE Symposium |
---|
Konferenz
Titel | IABSE Symposium Manchester 2024 |
---|---|
Untertitel | Construction's Role for a World in Emergency |
Kurztitel | IABSE 2024 |
Dauer | 10 - 12 April 2024 |
Webseite | |
Ort | University Place |
Stadt | Manchester |
Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
ORCID | /0000-0003-0767-684X/work/168207989 |
---|---|
Mendeley | 20124146-935e-35c9-a2fd-51c19465e85f |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- knowledge, NLP, production-data, requirements, verifications