Data-driven and production-oriented tendering design using artificial intelligence

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Linda Cusumano - , Chalmers University of Technology (Autor:in)
  • Rasmus Rempling - , Chalmers University of Technology (Autor:in)
  • Robert Jockwer - , Chalmers University of Technology (Autor:in)
  • Nilla Olsson - , NCC Sweden AB (Autor:in)
  • Mats Granath - , University of Gothenburg (Autor:in)

Abstract

Construction projects are facing an increase in requirements, making requirement management labour intense. Therefore, this research project explores possibilities to automate the requirement analysis in the bidding phase and link these requirements to verifications in the production phase. The first part of the research targets the requirement analysis and applies natural language processing techniques for automation possibilities. The second part of the research explores production data as a data-driven verification method and how the data can be used in knowledge feedback loops. The results show that applying natural language processing techniques for analysing construction project requirements is a possible step towards systematic requirements management. Furthermore, production data can be used as a knowledge base for quality improvement in construction companies.

Details

OriginalspracheEnglisch
TitelIABSE Symposium Manchester 2024: Construction's Role for a World in Emergency
Herausgeber (Verlag)International Association for Bridge and Structural Engineering (IABSE), Zürich
Seiten107-114
Seitenumfang8
ISBN (elektronisch)9783857482045
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIABSE Symposium

Konferenz

TitelIABSE Symposium Manchester 2024
UntertitelConstruction's Role for a World in Emergency
KurztitelIABSE 2024
Dauer10 - 12 April 2024
Webseite
OrtUniversity Place
StadtManchester
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0003-0767-684X/work/168207989
Mendeley 20124146-935e-35c9-a2fd-51c19465e85f

Schlagworte