CVD Grown Tungsten Oxide for Low Temperature Hydrogen Sensing: Tuning Surface Characteristics via Materials Processing for Sensing Applications

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Martin Wilken - , Ruhr-Universität Bochum (Autor:in)
  • Engin Ciftyürek - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Stefan Cwik - , Ruhr-Universität Bochum (Autor:in)
  • Lukas Mai - , Ruhr-Universität Bochum (Autor:in)
  • Bert Mallick - , Ruhr-Universität Bochum (Autor:in)
  • Detlef Rogalla - , Ruhr-Universität Bochum (Autor:in)
  • Klaus Schierbaum - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Anjana Devi - , Ruhr-Universität Bochum (Autor:in)

Abstract

The intrinsic properties of semiconducting oxides having nanostructured morphology are highly appealing for gas sensing. In this study, the fabrication of nanostructured WO3 thin films with promising surface characteristics for hydrogen (H2) gas sensing applications is accomplished. This is enabled by developing a chemical vapor deposition (CVD) process employing a new and volatile tungsten precursor bis(diisopropylamido)-bis(tert-butylimido)-tungsten(VI), [W(NtBu)2(NiPr2)2]. The as-grown nanostructured WO3 layers are thoroughly analyzed. Particular attention is paid to stoichiometry, surface characteristics, and morphology, all of which strongly influence the gas-sensing potential of WO3. Synchrotron-based ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), X-ray photoelectron emission microscopy (XPEEM), low-energy electron microscopy (LEEM) and 4-point van der Pauw (vdP) technique made it possible to analyze the surface chemistry and structural uniformity with a spatially resolved insight into the chemical, electronic and electrical properties. The WO3 layer is employed as a hydrogen (H2) sensor within interdigitated mini-mobile sensor architecture capable of working using a standard computer's 5 V 1-wirebus connection. The sensor shows remarkable sensitivity toward H2. The high, robust, and repeatable sensor response (S) is attributed to the homogenous distribution of the W5+ oxidation state and associated oxygen vacancies, as shown by synchrotron-based UPS, XPS, and XPEEM analysis.

Details

OriginalspracheEnglisch
Aufsatznummer2204636
Seitenumfang13
FachzeitschriftSmall
Jahrgang19
Ausgabenummer1
Frühes Online-Datum10 Nov. 2022
PublikationsstatusVeröffentlicht - Jan. 2023
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 36354167

Schlagworte

Schlagwörter

  • hydrogen sensing, metalorganic chemical vapor deposition (MOCVD), nanostructured layers, surface characteristics, tungsten oxides