Criteria for supersolvability of saturated fusion systems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let p be a prime number. A saturated fusion system F on a finite p-group S is said to be supersolvable if there is a series 1=S0≤S1≤…≤Sm=S of subgroups of S such that Si is strongly F-closed for all 0≤i≤m and such that Si+1/Si is cyclic for all 0≤i<m. We prove some criteria that ensure that a saturated fusion system F on a finite p-group S is supersolvable provided that certain subgroups of S are abelian and weakly F-closed. Our results can be regarded as generalizations of purely group-theoretic results of Asaad [3].
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 910-930 |
Seitenumfang | 21 |
Fachzeitschrift | Journal of algebra |
Jahrgang | 647 |
Publikationsstatus | Veröffentlicht - 1 Juni 2024 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Fusion systems, Pronormal, Supersolvable, Weakly closed, Weakly pronormal