Criteria for eventual domination of operator semigroups and resolvents

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

We consider two C0 -semigroups (etA)t≥0 and (etB)t≥0 on function spaces (or, more generally, on Banach lattices) and analyse eventual domination between them in the sense that |etAf|≤etB|f| for all sufficiently large times t. We characterise this behaviour and prove a number of theoretical results which complement earlier results given by Mugnolo and the second author in the special case where both semigroups are positive for large times. Moreover, we study the analogous question of whether the resolvent of B eventually dominates the resolvent of A close to the spectral bound of B. This is closely related to the so-called maximum and anti-maximum principles. In order to demonstrate how our results can be used, we include several applications to concrete differential operators. At the end of the paper, we demonstrate that eventual positivity of the resolvent of a semigroup generator is closely related to eventual positivity of the Cesàro means of the associated semigroup.

Details

OriginalspracheEnglisch
TitelOperators, semigroups, algebras and function theory
Redakteure/-innenYemon Choi, Matthew Daws, Gordon Blower
Herausgeber (Verlag)Birkhäuser Verlag
Seiten1-26
Seitenumfang26
ISBN (elektronisch)978-3-031-38020-4
ISBN (Print)978-3-031-38019-8, 978-3-031-38022-8
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheOperator theory : advances and applications
Band292
ISSN0255-0156

Externe IDs

Scopus 85179707368

Schlagworte

ASJC Scopus Sachgebiete