Counting Strategies for the Probabilistic Description Logic ALC^ME Under the Principle of Maximum Entropy
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We present$$\mathcal {ALC}^\mathsf {ME}$$, a probabilistic variant of the Description Logic$$\mathcal {ALC}$$ that allows for representing and processing conditional statements of the form “if E holds, then F follows with probability p” under the principle of maximum entropy. Probabilities are understood as degrees of belief and formally interpreted by the aggregating semantics. We prove that both checking consistency and drawing inferences based on approximations of the maximum entropy distribution is possible in$$\mathcal {ALC}^\mathsf {ME}$$ in time polynomial in the domain size. A major problem for probabilistic reasoning from such conditional knowledge bases is to count models and individuals. To achieve our complexity results, we develop sophisticated counting strategies on interpretations aggregated with respect to the so-called conditional impacts of types, which refine their conditional structure.
Details
Originalsprache | Englisch |
---|---|
Titel | Logics in Artificial Intelligence - 16th European Conference, JELIA 2019, Proceedings |
Redakteure/-innen | Francesco Calimeri, Nicola Leone, Marco Manna |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 434-449 |
Seitenumfang | 16 |
ISBN (Print) | 9783030195694 |
Publikationsstatus | Veröffentlicht - 2019 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 11468 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 16th European Conference on Logics in Artificial Intelligence |
---|---|
Kurztitel | JELIA 2019 |
Veranstaltungsnummer | 16 |
Dauer | 7 - 11 Mai 2019 |
Ort | University of Calabria |
Stadt | Rende |
Land | Italien |
Externe IDs
Scopus | 85065981675 |
---|---|
ORCID | /0000-0002-4049-221X/work/142247947 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Aggregating semantics, Domain-lifted inference, Principle of maximum entropy, Probabilistic description logics