Counting Strategies for the Probabilistic Description Logic ALC^ME Under the Principle of Maximum Entropy

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

We present$$\mathcal {ALC}^\mathsf {ME}$$, a probabilistic variant of the Description Logic$$\mathcal {ALC}$$ that allows for representing and processing conditional statements of the form “if E holds, then F follows with probability p” under the principle of maximum entropy. Probabilities are understood as degrees of belief and formally interpreted by the aggregating semantics. We prove that both checking consistency and drawing inferences based on approximations of the maximum entropy distribution is possible in$$\mathcal {ALC}^\mathsf {ME}$$ in time polynomial in the domain size. A major problem for probabilistic reasoning from such conditional knowledge bases is to count models and individuals. To achieve our complexity results, we develop sophisticated counting strategies on interpretations aggregated with respect to the so-called conditional impacts of types, which refine their conditional structure.

Details

OriginalspracheEnglisch
TitelLogics in Artificial Intelligence - 16th European Conference, JELIA 2019, Proceedings
Redakteure/-innenFrancesco Calimeri, Nicola Leone, Marco Manna
Herausgeber (Verlag)Springer, Berlin [u. a.]
Seiten434-449
Seitenumfang16
ISBN (Print)9783030195694
PublikationsstatusVeröffentlicht - 2019
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science, Volume 11468
ISSN0302-9743

Konferenz

Titel16th European Conference on Logics in Artificial Intelligence
KurztitelJELIA 2019
Veranstaltungsnummer16
Dauer7 - 11 Mai 2019
OrtUniversity of Calabria
StadtRende
LandItalien

Externe IDs

Scopus 85065981675
ORCID /0000-0002-4049-221X/work/142247947

Schlagworte

Schlagwörter

  • Aggregating semantics, Domain-lifted inference, Principle of maximum entropy, Probabilistic description logics

Bibliotheksschlagworte