Co-Speech Gesture Detection through Multi-Phase Sequence Labeling

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Gestures are integral components of face-to-face communication. They unfold over time, often following predictable movement phases of preparation, stroke, and retraction. Yet, the prevalent approach to automatic gesture detection treats the problem as binary classification, classifying a segment as either containing a gesture or not, thus failing to capture its inherently sequential and contextual nature. To address this, we introduce a novel framework that reframes the task as a multi-phase sequence labeling problem rather than binary classification. Our model processes sequences of skeletal movements over time windows, uses Transformer encoders to learn contextual embeddings, and leverages Conditional Random Fields to perform sequence labeling. We evaluate our proposal on a large dataset of diverse co-speech gestures in task-oriented face-to-face dialogues. The results consistently demonstrate that our method significantly outperforms strong baseline models in detecting gesture strokes. Furthermore, applying Transformer encoders to learn contextual embeddings from movement sequences substantially improves gesture unit detection. These results highlight our framework's capacity to capture the fine-grained dynamics of co-speech gesture phases, paving the way for more nuanced and accurate gesture detection and analysis.

Details

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten3995-4003
Seitenumfang9
ISBN (elektronisch)979-8-3503-1892-0
PublikationsstatusVeröffentlicht - 3 Jan. 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Workshop on Applications of Computer Vision (WACV)
ISSN2472-6737

Konferenz

Titel2024 IEEE/CVF Winter Conference on Applications of Computer Vision
KurztitelWACV 2024
Dauer4 - 8 Januar 2024
Webseite
OrtWaikoloa Beach Marriott Resort & Spa
StadtWaikoloa
LandUSA/Vereinigte Staaten

Schlagworte

Schlagwörter

  • Algorithms, Biometrics, body pose, Datasets and evaluations, face, gesture