Correlation structure of time-changed levy processes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Time-changed Levy processes include the fractional Poisson process, and the scaling limit of a continuous time random walk. They are obtained by replacing the deterministic time variable by a positive non-decreasing random process. The use of time-changed processes in modeling often requires the knowledge of their second order properties such as the correlation function. This paper provides the explicit expression for the correlation function for time-changed Levy processes. The processes used to model random time include subordinators and inverse subordinators, and the time-changed Levy processes include limits of continuous time random walks. Several examples useful in applications are discussed.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e-483 |
Fachzeitschrift | Communications in applied and industrial mathematics : CAIM |
Jahrgang | 6 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2015 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Correlation function, Inverse subordinators, Levy processes, Mittag-Leffler function, Subordinators