Correlation Clustering of Bird Sounds

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Bird sound classification is the task of relating any sound recording to those species of bird that can be heard in the recording. Here, we study bird sound clustering, the task of deciding for any pair of sound recordings whether the same species of bird can be heard in both. We address this problem by first learning, from a training set, probabilities of pairs of recordings being related in this way, and then inferring a maximally probable partition of a test set by correlation clustering. We address the following questions: How accurate is this clustering, compared to a classification of the test set? How do the clusters thus inferred relate to the clusters obtained by classification? How accurate is this clustering when applied to recordings of bird species not heard during training? How effective is this clustering in separating, from bird sounds, environmental noise not heard during training?

Details

OriginalspracheEnglisch
TitelPattern Recognition - 45th DAGM German Conference, DAGM GCPR 2023, Proceedings
Redakteure/-innenUllrich Köthe, Carsten Rother
Herausgeber (Verlag)Springer, Cham
Seiten508–523
Seitenumfang16
ISBN (elektronisch)978-3-031-54605-1
ISBN (Print)978-3-031-54604-4
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band14264
ISSN0302-9743

Externe IDs

ORCID /0000-0001-5036-9162/work/143781906
Scopus 85189526943

Schlagworte

Schlagwörter

  • Bird sound classification, Correlation clustering