Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Simon Christian Boehme - , Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Nadine Tchamba Yimga - , Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Achidi Frick - , Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Susann Gunst - , Merz GmbH & Co. KGaA (Autor:in)
  • Harald Untenecker - , Merz GmbH & Co. KGaA (Autor:in)
  • John T.M. Kennis - , Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Ivo H.M. van Stokkum - , Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Peer Kirsch - , Merz GmbH & Co. KGaA , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Elizabeth von Hauff - , Vrije Universiteit Amsterdam (VU) (Autor:in)

Abstract

A key challenge in the field of organic electronics is predicting how chemical structure at the molecular scale determines nature and dynamics of excited states, as well as the macroscopic optoelectronic properties in thin film. Here, the donor–acceptor dyes 4,7-bis[5-[4-(3-ethylheptyl)-2,3-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,3-FFPTB) and 4,7-bis[5-[4-(3-ethylheptyl)-2,6-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,6-FFPTB) are synthesized, which only differ in the position of one fluorine substitution. It is observed that this variation in chemical structure does not influence the energetic position of the molecular frontier orbitals or the ultrafast dynamics on the FFPTB backbone. However, it does result in differences at the macroscale, specifically regarding structural and electrical properties of the FFPTB films. Both FFPTB molecules form crystalline films at room temperature, whereas 2,3-FFPTB has two ordered smectic phases at elevated temperatures, and 2,6-FFPTB does not display any liquid crystalline phases. It is demonstrated that the altered location of the fluorine substitution allows to control the electrostatic potential along the molecular backbone without impacting molecular energetics or ultrafast dynamics. Such a design strategy succeeds in controlling molecular interactions in liquid crystalline phase, and it is shown that the associated molecular order, or rather disorder, can be exploited to achieve ambipolar transport in FFPTB films.

Details

OriginalspracheEnglisch
Aufsatznummer2100186
FachzeitschriftAdvanced electronic materials
Jahrgang7
Ausgabenummer8
PublikationsstatusVeröffentlicht - Aug. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-6269-0540/work/172082563

Schlagworte

Schlagwörter

  • ambipolar, dye, liquid crystal, organic electronics, ultrafast