Cooperative Assistance in Robotic Surgery through Multi-Agent Reinforcement Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Paul Maria Scheikl - , Karlsruher Institut für Technologie (Autor:in)
  • Balazs Gyenes - , Karlsruher Institut für Technologie (Autor:in)
  • Tornike Davitashvili - , Universität Heidelberg (Autor:in)
  • Rayan Younis - , Universität Heidelberg (Autor:in)
  • Andre Schulze - , Universitätsklinikum Heidelberg (Autor:in)
  • Beat P. Muller-Stich - , Universität Heidelberg (Autor:in)
  • Gerhard Neumann - , Karlsruher Institut für Technologie (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Franziska Mathis-Ullrich - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Cognitive cooperative assistance in robot-assisted surgery holds the potential to increase quality of care in minimally invasive interventions. Automation of surgical tasks promises to reduce the mental exertion and fatigue of surgeons. In this work, multi-agent reinforcement learning is demonstrated to be robust to the distribution shift introduced by pairing a learned policy with a human team member. Multi-agent policies are trained directly from images in simulation to control multiple instruments in a sub task of the minimally invasive removal of the gallbladder. These agents are evaluated individually and in cooperation with humans to demonstrate their suitability as autonomous assistants. Compared to human teams, the hybrid teams with artificial agents perform better considering completion time (44.4% to 71.2% shorter) as well as number of collisions (44.7% to 98.0% fewer). Path lengths, however, increase under control of an artificial agent (11.4% to 33.5% longer). A multi-agent formulation of the learning problem was favored over a single-agent formulation on this surgical sub task, due to the sequential learning of the two instruments. This approach may be extended to other tasks that are difficult to formulate within the standard reinforcement learning framework. Multi-agent reinforcement learning may shift the paradigm of cognitive robotic surgery towards seamless cooperation between surgeons and assistive technologies.

Details

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1859-1864
Seitenumfang6
ISBN (elektronisch)9781665417143
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN2153-0858

Konferenz

Titel2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
KurztitelIROS 2021
Dauer27 September - 1 Oktober 2021
StadtPrague
LandTschechische Republik