Convolutional Neural Networks for Epileptic Seizure Prediction

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Epilepsy is the most common neurological disorder and an accurate forecast of seizures would help to overcome the patient's uncertainty and helplessness. In this contribution, we present and discuss a novel methodology for the classification of intracranial electroencephalography (iEEG) for seizure prediction. Contrary to previous approaches, we categorically refrain from an extraction of hand-crafted features and use a convolutional neural network (CNN) topology instead for both the determination of suitable signal characteristics and the binary classification of preictal and interictal segments. Three different models have been evaluated on public datasets with long-term recordings from four dogs and three patients. Overall, our findings demonstrate the general applicability. In this work we discuss the strengths and limitations of our methodology.

Details

OriginalspracheEnglisch
TitelProceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018
Redakteure/-innenHarald Schmidt, David Griol, Haiying Wang, Jan Baumbach, Huiru Zheng, Zoraida Callejas, Xiaohua Hu, Julie Dickerson, Le Zhang
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten2577-2582
Seitenumfang6
ISBN (elektronisch)9781538654880
PublikationsstatusVeröffentlicht - 21 Jan. 2019
Peer-Review-StatusJa

Konferenz

Titel2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018
Dauer3 - 6 Dezember 2018
StadtMadrid
LandSpanien

Externe IDs

ORCID /0000-0001-7436-0103/work/142240236
ORCID /0009-0001-1168-3666/work/153654952
ORCID /0000-0001-9875-3534/work/154191165

Schlagworte