Convolution inequalities for Besov and Triebel–Lizorkin spaces, and applications to convolution semigroups
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We establish convolution inequalities for Besov spaces Bp,qs and Triebel–Lizorkin spaces Fp,qs . As an application, we study the mapping properties of convolution semigroups, considered as operators on the function spaces Asp,q, A ∈ {B, F}. Our results apply to a wide class of convolution semigroups including the Gauß–Weierstraß semigroup, stable semigroups and heat kernels for higher-order powers of the Laplacian (−∆)m, and we can derive various caloric smoothing estimates.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 93-119 |
Seitenumfang | 27 |
Fachzeitschrift | Studia Mathematica |
Jahrgang | 262 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- caloric smoothing, convolution, convolution semigroup, function space, generalized Gauß–Weierstraß semigroup, higher-order heat kernel, Lévy process