Convex order of discrete, continuous, and predictable quadratic variation and applications to options on variance

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Claus Griessler - , Universität Wien (Autor:in)
  • Martin Keller-Ressel - , Technische Universität Berlin (Autor:in)

Abstract

We consider a square-integrable semimartingale and investigate the convex order relations between its discrete, continuous, and predictable quadratic variation. As the main result, we show that if the semimartingale has conditionally independent increments and symmetric jump measure, then its discrete realized variance dominates its quadratic variation in increasing convex order. The result has immediate applications to the pricing of options on realized variance. For a class of models including independently time-changed Lévy models and Sato processes with symmetric jumps our results show that options on variance are typically underpriced if quadratic variation is substituted for the discretely sampled realized variance.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-19
Seitenumfang19
FachzeitschriftSIAM journal on financial mathematics
Jahrgang5
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0003-0913-3363/work/167706925

Schlagworte

Schlagwörter

  • Convex order, Options on variance, Quadratic variation, Realized variance, Variance swaps