Convex algebraic geometry of curvature operators
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study the structure of the set of algebraic curvature operators satisfying a sectional curvature bound under the light of the emerging field of convex algebraic geometry. More precisely, we determine in which dimensions n this convex semialgebraic set is a spectrahedron or a spectrahedral shadow; in particular, for n ≥ 5, these give new counterexamples to the Helton-Nie conjecture. Moreover, efficient algorithms are provided if n = 4 to test membership in such a set. For n ≥ 5, algorithms using semidefinite programming are obtained from hierarchies of inner approximations by spectrahedral shadows and outer relaxations by spectrahedra.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 200-228 |
Seitenumfang | 29 |
Fachzeitschrift | SIAM J. Appl. Algebra Geom. |
Jahrgang | 5 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 Mai 2021 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85106247065 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Convex algebraic geometry, Differential geometry, Sectional curvature, Semidefinite programming, Spectrahedral shadow