Convergent Cross Mapping: Basic concept, influence of estimation parameters and practical application

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Karin Schiecke - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Britta Pester - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Martha Feucht - , Medizinische Universität Wien (Autor:in)
  • Lutz Leistritz - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Herbert Witte - , Friedrich-Schiller-Universität Jena (Autor:in)

Abstract

In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.

Details

OriginalspracheEnglisch
Titel2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten7418-7421
Seitenumfang4
ISBN (elektronisch)9781424492718
PublikationsstatusVeröffentlicht - 4 Nov. 2015
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
KurztitelEMBC 2015
Veranstaltungsnummer37
Dauer25 - 29 August 2015
StadtMilan
LandItalien

Externe IDs

PubMed 26738006
ORCID /0000-0001-8264-2071/work/142254069