Convergence Phenomena of Q(p)-Elements for Convection-Diffusion Problems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
- Technische Universität Dresden
Abstract
We present a numerical study for singularly perturbed convectiondiffusion problems using higher order Galerkin and streamline diffusion finite element method. We are especially interested in convergence and superconvergence properties with respect to different interpolation operators. For this we investigate pointwise interpolation and vertex-edge-cell interpolation. (C) 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 280-296 |
Seitenumfang | 17 |
Fachzeitschrift | Numerical methods for partial differential equations |
Jahrgang | 29 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2013 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 84870337499 |
---|---|
ORCID | /0000-0002-2458-1597/work/142239709 |
Schlagworte
Schlagwörter
- boundary layers, layer-adapted meshes, singular perturbation, superconvergence, FINITE-ELEMENT-METHOD, CORNER SINGULARITIES, BOUNDARY-LAYERS, SUPERCONVERGENCE