Convergence of sphingolipid desaturation across over 500 million years of plant evolution

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Hanno Christoph Resemann - , Georg-August-Universität Göttingen (Autor:in)
  • Cornelia Herrfurth - , Georg-August-Universität Göttingen (Autor:in)
  • Kirstin Feussner - , Georg-August-Universität Göttingen (Autor:in)
  • Ellen Hornung - , Georg-August-Universität Göttingen (Autor:in)
  • Anna K Ostendorf - , Pädagogische Hochschule Freiburg (Autor:in)
  • Jasmin Gömann - , Georg-August-Universität Göttingen (Autor:in)
  • Jennifer Mittag - , Technische Universität Dresden (Autor:in)
  • Nico van Gessel - , Pädagogische Hochschule Freiburg (Autor:in)
  • Jan de Vries - , Georg-August-Universität Göttingen (Autor:in)
  • Jutta Ludwig-Müller - , Institut für Botanik, Technische Universität Dresden (Autor:in)
  • Jennifer Markham - , University of Nebraska-Lincoln (Autor:in)
  • Ralf Reski - , Pädagogische Hochschule Freiburg (Autor:in)
  • Ivo Feussner - , Georg-August-Universität Göttingen (Autor:in)

Abstract

For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C24 fatty acids, classifying the new protein as sphingolipid fatty acid denaturase (PpSFD). PpSFD mutants showed a cold-sensitive phenotype as well as higher susceptibility to the oomycete Pythium, assigning functions in stress tolerance for PpSFD. Ectopic expression of PpSFD in the Atads2.1 (acyl coenzyme A desaturase-like 2) Arabidopsis thaliana mutant functionally complemented its cold-sensitive phenotype. While these two enzymes catalyse a similar reaction, their evolutionary origin is clearly different since AtADS2 is a methyl-end desaturase whereas PpSFD is a cytochrome b5 fusion desaturase. Altogether, we suggest that adjustment of membrane fluidity evolved independently in mosses and seed plants, which diverged more than 500 million years ago.

Details

OriginalspracheEnglisch
Seiten (von - bis)219-232
Seitenumfang14
FachzeitschriftNature plants
Jahrgang7
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85099763659

Schlagworte

Schlagwörter

  • Evolution, Molecular, Fatty Acid Desaturases/genetics, Gene Expression Regulation, Plant, Genes, Plant, Plants/genetics, Sphingolipids/genetics