Contributions to Methodologies to Improve Sensor Data Quality of Cyber Physical Production Systems Through Digitalisation: A Use Case Approach

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Cyber Physical Production Systems (CPPS) depend significantly on high-quality sensor data to function optimally, make decisions in real-time, and perform predictive maintenance inter alia. Nevertheless, the quality of sensor data in industrial settings is often affected by various factors such as environmental interference, hardware wear and tear, calibration drift, and intricate system interactions. This study introduces innovative methods to improve sensor data quality in CPPS through systematic digitalization strategies. By employing a use case methodology, we explore real-world production scenarios to pinpoint common data quality challenges and devise specific solutions. Our strategy integrates signal processing techniques, algorithms for detecting anomalies to establish robust frameworks for data validation and correction. The proposed methods offer practical, scalable solutions that can be adapted to various production environments, thereby enhancing the reliability and efficiency of cyber physical manufacturing systems. To illustrate the feasibility of our approach, we utilise the case study of a test bed.

Details

OriginalspracheEnglisch
TitelCYBER 2025, The Tenth International Conference on Cyber-Technologies and Cyber-Systems
Redakteure/-innenSteve Chan, Hirokazu Hasegawa
Herausgeber (Verlag)IARIA Press
Seiten55-67
Seitenumfang13
ISBN (elektronisch)978-1-68558-295-1
PublikationsstatusVeröffentlicht - 28 Sept. 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheCyber, International Conference on Advances in Cyber-Technologies and Cyber-Systems
ISSN2519-8599

Konferenz

Titel10th International Conference on Cyber-Technologies and Cyber-Systems
KurztitelCYBER 2025
Veranstaltungsnummer10
Dauer28 September - 2 Oktober 2025
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtMercure Lisboa Hotel & Online
StadtLisbon
LandPortugal

Externe IDs

ORCID /0009-0009-9342-629X/work/194255390
ORCID /0000-0001-7540-4235/work/194256296

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Failure analysis, Sensor data quality, Sensor data error detection