Concept of a causality-driven fault diagnosis system for cyber-physical production systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Carl Willy Mehling - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Sven Pieper - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Steffen Ihlenfeldt - , Professur für Werkzeugmaschinenentwicklung und adaptive Steuerungen, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)

Abstract

The automated production of individualized products in a cyber-physical production system (CPPS) requires the combined automation of software and machine components. While this leads to increased productivity, the complexity of the CPPS may result in long unplanned downtimes when faults occur, and no system model is available to guide the maintenance team. Knowledge-driven, data-driven or hybrid modeling are available approaches in the literature to obtaining a system model. While expert-driven and data-driven modeling face limited applicability to CPPS, hybrid models, combining both approaches can offer a solution. This paper proposes a causality-driven hybrid model for fault diagnosis in complex CPPS, represented in a causal knowledge graph (CKG). The CKG serves as a transparent system model for collaborative human-machine fault diagnosis. We provide a concept for the continuous hybrid learning of the CKG, a maturity model to classify the resulting CKG's fault diagnosis capabilities, and the industrial setting inspiring the approach.

Details

OriginalspracheEnglisch
Titel2023 IEEE 21st International Conference on Industrial Informatics, INDIN 2023
Redakteure/-innenHelene Dorksen, Stefano Scanzio, Jurgen Jasperneite, Lukasz Wisniewski, Kim Fung Man, Thilo Sauter, Lucia Seno, Henning Trsek, Valeriy Vyatkin
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
ISBN (elektronisch)9781665493130
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Industrial Informatics (INDIN)
Band2023-July
ISSN1935-4576

Konferenz

Titel2023 IEEE 21st International Conference on Industrial Informatics
KurztitelINDIN 2023
Veranstaltungsnummer21
Dauer17 - 20 Juli 2023
StadtLemgo
LandDeutschland

Schlagworte

Schlagwörter

  • artificial intelligence, cause effect analysis, cyber-physical production system, fault diagnosis, knowledge discovery