Concatenated Classic and Neural (CCN) Codes: ConcatenatedAE
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Small neural networks (NNs) used for error correction were shown to improve on classic channel codes and to address channel model changes. We extend the code dimension of any such structure by using the same NN under one-hot encoding multiple times, then serially-concatenated with an outer classic code. We design NNs with the same network parameters, where each Reed-Solomon codeword symbol is an input to a different NN. Significant improvements in block error probabilities for an additive Gaussian noise channel as compared to the small neural code are illustrated, as well as robustness to channel model changes.
Details
Originalsprache | Englisch |
---|---|
Titel | 2023 IEEE Wireless Communications and Networking Conference, WCNC 2023 - Proceedings |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 1-6 |
ISBN (elektronisch) | 978-1-6654-9122-8 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | IEEE Wireless Communications and Networking Conference, WCNC |
---|---|
Band | 2023-March |
ISSN | 1525-3511 |
Konferenz
Titel | 2023 IEEE Wireless Communications and Networking Conference |
---|---|
Kurztitel | WCNC 2023 |
Dauer | 26 - 29 März 2023 |
Webseite | |
Ort | Scottish Event Campus (SEC) |
Stadt | Glasgow |
Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
ORCID | /0000-0002-1702-9075/work/165878260 |
---|