ComPy-Learn: A toolbox for exploring machine learning representations for compilers

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.

Details

OriginalspracheEnglisch
Titel2020 Forum for Specification and Design Languages (FDL)
Seitenumfang4
ISBN (elektronisch)978-1-7281-8928-4
PublikationsstatusVeröffentlicht - 15 Sept. 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheForum on Specification, Verification and Design Languages, FDL
ISSN1636-9874

Konferenz

Titel2020 Forum on Specification and Design Languages, FDL 2020
Dauer15 - 17 September 2020
StadtKiel
LandDeutschland

Externe IDs

ORCID /0000-0002-5007-445X/work/141545618

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • Clang, Code Representations, Compilers, LLVM, Machine Learning