Compositional matrix-space models of language: Definitions, properties, and learning methods

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We give an in-depth account of compositional matrix-space models (CMSMs), a type of generic models for natural language, wherein compositionality is realized via matrix multiplication. We argue for the structural plausibility of this model and show that it is able to cover and combine various common compositional natural language processing approaches. Then, we consider efficient task-specific learning methods for training CMSMs and evaluate their performance in compositionality prediction and sentiment analysis.

Details

OriginalspracheEnglisch
Seiten (von - bis)32-80
Seitenumfang49
FachzeitschriftNatural Language Engineering
Jahrgang29
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Aug. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85112363099
Mendeley cf6feda1-d8a2-3bf2-b173-70c00e091634

Schlagworte

Schlagwörter

  • Compositionality, Compositionality prediction, Matrix-space model, Sentiment analysis, Word representation learning