Complex-Valued Neural Networks for Doppler Disambiguation in FMCW Radars
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Radars are commonly used in automotive applications to provide information on a target’s location and velocity simultaneously. The multiple-input and multiple-output technology has been applied to improve spatial awareness, but impacts the Doppler sampling rate and causes velocity ambiguity. An incorrect velocity indication can pose significant safety risks in the automotive industry. To address this, we propose a complex-valued neural network to retrieve the actual velocity from aliased Doppler response by parsing signal magnitudes and phases. On the artificial data, it achieves an accuracy of 99.3%, outperforming the conventional methods on the same data.
Details
Originalsprache | Englisch |
---|---|
Titel | 2023 24th International Radar Symposium, IRS 2023 |
Herausgeber (Verlag) | IEEE Computer Society |
Seiten | 1-10 |
Seitenumfang | 10 |
ISBN (elektronisch) | 978-3-944976-34-1 |
ISBN (Print) | 978-1-6654-5682-1 |
Publikationsstatus | Veröffentlicht - 26 Mai 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Proceedings International Radar Symposium |
---|---|
Band | 2023-May |
ISSN | 2155-5753 |
Konferenz
Titel | 24th International Radar Symposium |
---|---|
Kurztitel | IRS 2023 |
Veranstaltungsnummer | 24 |
Dauer | 24 - 26 Mai 2023 |
Webseite | |
Ort | Fraunhofer-Forum Berlin |
Stadt | Berlin |
Land | Deutschland |
Externe IDs
Ieee | 10.23919/IRS57608.2023.10172424 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Training, Computational modeling, Neural networks, Mathematical models, Doppler radar, Safety, Radar applications