Complex-Valued Neural Networks for Doppler Disambiguation in FMCW Radars

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Radars are commonly used in automotive applications to provide information on a target’s location and velocity simultaneously. The multiple-input and multiple-output technology has been applied to improve spatial awareness, but impacts the Doppler sampling rate and causes velocity ambiguity. An incorrect velocity indication can pose significant safety risks in the automotive industry. To address this, we propose a complex-valued neural network to retrieve the actual velocity from aliased Doppler response by parsing signal magnitudes and phases. On the artificial data, it achieves an accuracy of 99.3%, outperforming the conventional methods on the same data.

Details

OriginalspracheEnglisch
Titel2023 24th International Radar Symposium, IRS 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten1-10
Seitenumfang10
ISBN (elektronisch)978-3-944976-34-1
ISBN (Print)978-1-6654-5682-1
PublikationsstatusVeröffentlicht - 26 Mai 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings International Radar Symposium
Band2023-May
ISSN2155-5753

Konferenz

Titel24th International Radar Symposium
KurztitelIRS 2023
Veranstaltungsnummer24
Dauer24 - 26 Mai 2023
Webseite
OrtFraunhofer-Forum Berlin
StadtBerlin
LandDeutschland

Externe IDs

Ieee 10.23919/IRS57608.2023.10172424

Schlagworte

Schlagwörter

  • Training, Computational modeling, Neural networks, Mathematical models, Doppler radar, Safety, Radar applications