Completeness-aware rule learning from knowledge graphs

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Thomas Pellissier Tanon - , Max-Planck-Institut für Informatik, TELECOM Paris (Autor:in)
  • Daria Stepanova - , Max-Planck-Institut für Informatik (Autor:in)
  • Simon Razniewski - , Max-Planck-Institut für Informatik (Autor:in)
  • Paramita Mirza - , Max-Planck-Institut für Informatik (Autor:in)
  • Gerhard Weikum - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

Knowledge graphs (KGs) are huge collections of primarily encyclopedic facts that are widely used in entity recognition, structured search, question answering, and other tasks. Rule mining is commonly applied to discover patterns in KGs. However, unlike in traditional association rule mining, KGs provide a setting with a high degree of incompleteness, which may result in the wrong estimation of the quality of mined rules, leading to erroneous beliefs such as all artists have won an award. In this paper we propose to use (in-)completeness meta-information to better assess the quality of rules learned from incomplete KGs. We introduce completeness-aware scoring functions for relational association rules. Experimental evaluation both on real and synthetic datasets shows that the proposed rule ranking approaches have remarkably higher accuracy than the state-of-the-art methods in uncovering missing facts.

Details

OriginalspracheEnglisch
TitelProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Redakteure/-innenJerome Lang
Herausgeber (Verlag)International Joint Conferences on Artificial Intelligence Organization
Seiten5339-5343
Seitenumfang5
ISBN (elektronisch)9780999241127
PublikationsstatusVeröffentlicht - 2018
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIJCAI International Joint Conference on Artificial Intelligence
Band2018-July
ISSN1045-0823

Konferenz

Titel27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Dauer13 - 19 Juli 2018
StadtStockholm
LandSchweden

Externe IDs

ORCID /0000-0002-5410-218X/work/185318139

Schlagworte

ASJC Scopus Sachgebiete