Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We continue the study of the operator of generalized Maxwell equations and completely discover the behavior of the solutions of the time-harmonic equations as the frequency tends to zero. Thereby we identify degenerate operators in terms of special 'polynomially growing' solutions of a corresponding static problem, which must be added to the 'usual' Neumann series in order to describe the low frequency asymptotic adequately.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 125-184 |
Seitenumfang | 60 |
Fachzeitschrift | Asymptotic Analysis |
Jahrgang | 60 |
Ausgabenummer | 3-4 |
Publikationsstatus | Veröffentlicht - 2008 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224227 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Asymptotic expansions, Electro-magneto static, Exterior boundary value problems, Hankel functions, Hodge-Helmholtz decompositions, Low frequency asymptotics, Maxwell's equations, Radiating solutions, Spherical harmonics, Variable coefficients