Complete bernstein functions and subordinators with nested ranges. A note on a paper by P. Marchal

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Let α: [0, 1] → [0, 1] be a measurable function. It was proved by P. Marchal [2] that the function (Formula Presented) is a special Bernstein function. Marchal used this to construct, on a single probability R(a) such that (Formula Presented) space, a is the subordinator with Laplace exponent φ(ɑ)) and R(ɑ) ⊂ R(β) whenever ɑ ≤ β. We give two simple proofs showing that φ(ɑ) is a complete Bernstein function and extend Marchal’s construction to all complete Bernstein functions.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-5
Fachzeitschrift Electronic communications in probability : ECP
Jahrgang21
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Bernstein function, Complete Bernstein function, Subordinator