Compiler-Assisted Kernel Selection for FPGA-based Near-Memory Computing Platforms
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The speed of modern computing systems has improved significantly, thanks to advances in CMOS technology. However, the memory bandwidth of DRAM has not kept pace with these improvements in terms of latency and energy consumption, which is known as the memory wall [1]. FPGAs with high-bandwidth memory (HBM) provide significantly improved performance on memory-intensive tasks, such as graph processing and machine learning. By leveraging 3D-stacked DRAM memory on FPGAs, it is possible to realize the Near-Memory Computing (NMC) paradigm, which involves offloading some kernels to be processed close to the memory. While there have been many studies on NMC accelerators, there is no established method for determining which application kernels are suitable for execution near the HBM. To fully realize the potential of FPGA-HBM architectures, it is important to identify offloading candidates without relying on programmers' knowledge. However, this is a non-trivial task due to the complexity of modern applications. To address this issue, we propose a compiler-assisted tool-flow for the automatic selection of kernels to be offloaded.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings - 31st IEEE International Symposium on Field-Programmable Custom Computing Machines, FCCM 2023 |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 222 |
Seitenumfang | 1 |
ISBN (elektronisch) | 979-8-3503-1205-8 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) |
---|
Konferenz
Titel | 31st IEEE International Symposium on Field-Programmable Custom Computing Machines |
---|---|
Kurztitel | FCCM 2023 |
Veranstaltungsnummer | 31 |
Dauer | 8 - 11 Mai 2023 |
Webseite | |
Ort | Marina del Rey Marriott |
Stadt | Marina Del Rey |
Land | USA/Vereinigte Staaten |
Externe IDs
ORCID | /0000-0003-2571-8441/work/159607555 |
---|
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- characterization, High-bandwidth memory, near-memory computing, parallel architectures, prediction