Compiler-Assisted Kernel Selection for FPGA-based Near-Memory Computing Platforms

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The speed of modern computing systems has improved significantly, thanks to advances in CMOS technology. However, the memory bandwidth of DRAM has not kept pace with these improvements in terms of latency and energy consumption, which is known as the memory wall [1]. FPGAs with high-bandwidth memory (HBM) provide significantly improved performance on memory-intensive tasks, such as graph processing and machine learning. By leveraging 3D-stacked DRAM memory on FPGAs, it is possible to realize the Near-Memory Computing (NMC) paradigm, which involves offloading some kernels to be processed close to the memory. While there have been many studies on NMC accelerators, there is no established method for determining which application kernels are suitable for execution near the HBM. To fully realize the potential of FPGA-HBM architectures, it is important to identify offloading candidates without relying on programmers' knowledge. However, this is a non-trivial task due to the complexity of modern applications. To address this issue, we propose a compiler-assisted tool-flow for the automatic selection of kernels to be offloaded.

Details

OriginalspracheEnglisch
TitelProceedings - 31st IEEE International Symposium on Field-Programmable Custom Computing Machines, FCCM 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten222
Seitenumfang1
ISBN (elektronisch)979-8-3503-1205-8
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheAnnual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)

Konferenz

Titel31st IEEE International Symposium on Field-Programmable Custom Computing Machines
KurztitelFCCM 2023
Veranstaltungsnummer31
Dauer8 - 11 Mai 2023
Webseite
OrtMarina del Rey Marriott
StadtMarina Del Rey
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0003-2571-8441/work/159607555

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • characterization, High-bandwidth memory, near-memory computing, parallel architectures, prediction