Competing gauge fields and entropically driven spin liquid to spin liquid transition in non-Kramers pyrochlores

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Daniel Lozano-Gómez - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Theoretische Festkörperphysik, University of Waterloo, Technische Universität Dresden (Autor:in)
  • Vincent Noculak - , Freie Universität (FU) Berlin, Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Jaan Oitmaa - , University of New South Wales (Autor:in)
  • Rajiv R.P. Singh - , University of California at Davis (Autor:in)
  • Yasir Iqbal - , Indian Institute of Technology Madras (IITM) (Autor:in)
  • Johannes Reuther - , Freie Universität (FU) Berlin, Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Indian Institute of Technology Madras (IITM) (Autor:in)
  • Michel J.P. Gingras - , University of Waterloo (Autor:in)

Abstract

Gauge theories are powerful theoretical physics tools that allow complex phenomena to be reduced to simple principles and are used in both high-energy and condensed matter physics. In the latter context, gauge theories are becoming increasingly popular for capturing the intricate spin correlations in spin liquids, exotic states of matter in which the dynamics of quantum spins never ceases, even at absolute zero temperature. We consider a spin system on a three-dimensional pyrochlore lattice where emergent gauge fields not only describe the spin liquid behavior at zero temperature but crucially determine the system’s temperature evolution, with distinct gauge fields giving rise to different spin liquid phases in separate temperature regimes. Focusing first on classical spins, in an intermediate temperature regime, the system shows an unusual coexistence of emergent vector and tensor gauge fields where the former is known from classical spin ice systems while the latter has been associated with fractonic quasiparticles, a peculiar type of excitation with restricted mobility. Upon cooling, the system transitions into a low-temperature phase where an entropic selection mechanism depopulates the degrees of freedom associated with the tensor gauge field, rendering the system spin-ice-like. We further provide numerical evidence that in the corresponding quantum model, a spin liquid with coexisting vector and tensor gauge fields has a finite window of stability in the parameter space of spin interactions down to zero temperature. Finally, we discuss the relevance of our findings for non-Kramers magnetic pyrochlore materials.

Details

OriginalspracheEnglisch
Aufsatznummere2403487121
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang121
Ausgabenummer36
PublikationsstatusVeröffentlicht - 3 Sept. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 39196626

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • competing gauge fields, entropic selection, frustrated magnetism, liquid-to-liquid crossover, spin liquids