Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynamics in an online fashion. We highlight the benefit of a multiply-accumulate (MAC) array in the SpiNNaker 2 prototype which is ordinarily used in rate-based machine learning networks when employed in a neuromorphic, spiking context. In addition, the same benchmark tasks have been implemented on the Loihi neuromorphic chip, giving a side-by-side comparison regarding power consumption and computation time. While Loihi shows better efficiency when less complicated vector-matrix multiplication is involved, with the MAC array, the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-matrix multiplication is involved.

Details

OriginalspracheEnglisch
Aufsatznummer014002
Fachzeitschrift Neuromorphic computing and engineering
Jahrgang1
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Sept. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-6286-5064/work/160048712

Schlagworte

Schlagwörter

  • adaptive robotic control, keyword spotting, Loihi, MAC array, neuromorphic computing, SpiNNaker