Comparative validation of multi-instance instrument segmentation in endoscopy: Results of the ROBUST-MIS 2019 challenge

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tobias Roß - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg (Autor:in)
  • Annika Reinke - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg (Autor:in)
  • Peter M. Full - , Universität Heidelberg, Division of Medical Image Computing (MIC) (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Hannes Kenngott - , Universität Heidelberg (Autor:in)
  • Martin Apitz - , Universität Heidelberg (Autor:in)
  • Hellena Hempe - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Diana Mindroc-Filimon - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Patrick Scholz - , Deutsches Krebsforschungszentrum (DKFZ), HIDSS4Health – Helmholtz Information and Data Science School for Health (Autor:in)
  • Thuy Nuong Tran - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Pierangela Bruno - , Deutsches Krebsforschungszentrum (DKFZ), University of Calabria (Autor:in)
  • Pablo Arbeláez - , Universidad de los Andes Colombia (Autor:in)
  • Gui Bin Bian - , University of Chinese Academy of Sciences, CAS - Institute of Automation (Autor:in)
  • Sebastian Bodenstedt - , Medizinische Fakultät Carl Gustav Carus Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Jon Lindström Bolmgren - , Caresyntax GmbH (Autor:in)
  • Laura Bravo-Sánchez - , Universidad de los Andes Colombia (Autor:in)
  • Hua Bin Chen - , University of Chinese Academy of Sciences, CAS - Institute of Automation (Autor:in)
  • Cristina González - , Universidad de los Andes Colombia (Autor:in)
  • Dong Guo - , University of Electronic Science and Technology of China (Autor:in)
  • Pål Halvorsen - , SimulaMet, Oslo Metropolitan University (Autor:in)
  • Pheng Ann Heng - , Chinese University of Hong Kong (Autor:in)
  • Enes Hosgor - , Caresyntax GmbH (Autor:in)
  • Zeng Guang Hou - , University of Chinese Academy of Sciences, CAS - Institute of Automation (Autor:in)
  • Fabian Isensee - , Universität Heidelberg, Division of Medical Image Computing (MIC) (Autor:in)
  • Debesh Jha - , SimulaMet, University of Tromsø – The Arctic University of Norway (Autor:in)
  • Tingting Jiang - , Peking University (Autor:in)
  • Yueming Jin - , Chinese University of Hong Kong (Autor:in)
  • Kadir Kirtac - , Caresyntax GmbH (Autor:in)
  • Sabrina Kletz - , Alpen-Adria-Universitat Klagenfurt (Autor:in)
  • Stefan Leger - , Nationales Centrum für Tumorerkrankungen Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Zhixuan Li - , Peking University (Autor:in)
  • Klaus H. Maier-Hein - , Division of Medical Image Computing (MIC) (Autor:in)
  • Zhen Liang Ni - , University of Chinese Academy of Sciences, CAS - Institute of Automation (Autor:in)
  • Michael A. Riegler - , SimulaMet (Autor:in)
  • Klaus Schoeffmann - , Alpen-Adria-Universitat Klagenfurt (Autor:in)
  • Ruohua Shi - , Peking University (Autor:in)
  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Michael Stenzel - , Caresyntax GmbH (Autor:in)
  • Isabell Twick - , Caresyntax GmbH (Autor:in)
  • Gutai Wang - , University of Electronic Science and Technology of China (Autor:in)
  • Jiacheng Wang - , Xiamen University (Autor:in)
  • Liansheng Wang - , Xiamen University (Autor:in)
  • Lu Wang - , University of Electronic Science and Technology of China (Autor:in)
  • Yujie Zhang - , Xiamen University (Autor:in)
  • Yan Jie Zhou - , University of Chinese Academy of Sciences, CAS - Institute of Automation (Autor:in)
  • Lei Zhu - , Chinese University of Hong Kong (Autor:in)
  • Manuel Wiesenfarth - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Annette Kopp-Schneider - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Beat P. Müller-Stich - , Universität Heidelberg (Autor:in)
  • Lena Maier-Hein - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).

Details

OriginalspracheEnglisch
Aufsatznummer101920
FachzeitschriftMedical Image Analysis
Jahrgang70
PublikationsstatusVeröffentlicht - Mai 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33676097
ORCID /0000-0002-4590-1908/work/163294062

Schlagworte

Schlagwörter

  • Minimally invasive surgery, Multi-instance instrument, Robustness and generalization, Surgical data science