Compact Thermo-Diffusion based Physical Memristor Model

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Iosif Angelos Fyrigos - , Democritus University of Thrace (Autor:in)
  • Theodoros Panagiotis Chatzinikolaou - , Democritus University of Thrace (Autor:in)
  • Vasileios Ntinas - , Democritus University of Thrace, UPC Universitat Politècnica de Catalunya (Barcelona Tech) (Autor:in)
  • Stavros Kitsios - , National Technical University of Athens (Autor:in)
  • Panagiotis Bousoulas - , National Technical University of Athens (Autor:in)
  • Michail Antisthenis Tsompanas - , Democritus University of Thrace (Autor:in)
  • Dimitris Tsoukalas - , National Technical University of Athens (Autor:in)
  • Andrew Adamatzky - , University of the West of England (Autor:in)
  • Antonio Rubio - , UPC Universitat Politècnica de Catalunya (Barcelona Tech) (Autor:in)
  • Georgios Ch Sirakoulis - , Democritus University of Thrace (Autor:in)

Abstract

The threshold switching effect is critical in memristor devices for a range of applications, from crossbar design reliability to simulating neuromorphic features using artificial neural networks. The rich inherit dynamics of a metallic conductive filament (CF) formation are thought to be linked to this characteristic. Simulating these dynamics is necessary to develop an accurate memristor model. In this work we present a compact memristor model that utilizes the drift, diffusion and thermo-diffusion effects. These three effects are taken into consideration to derive the switching behavior of a memristor. The resistance of a memristor is calculated based on the evolution of a truncated cone shaped filament. The objective of this model is to achieve a realistic integration of switching mechanisms of the memristor device, while minimizing the overhead on computing resources and being compatible with circuit design tools. The model incorporates the effect of thermo-diffusion on the switching pattern, providing a different perception of the ionic transport processes, which enable the unipolar switching. SPICE simulation results provide an exact match with experimental results of Metal-Insulator-Metal (MIM) memristive devices of Ag/Si2/SiO2.07/Pt nanoparticles (NPs) configuration.

Details

OriginalspracheEnglisch
Titel2022 IEEE International Symposium on Circuits and Systems (ISCAS)
ErscheinungsortAustin
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten2237-2241
Seitenumfang5
ISBN (elektronisch)978-1-6654-8485-5, 978-1-6654-8484-8
ISBN (Print)978-1-6654-8486-2
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Symposium on Circuits and Systems (ISCAS)
ISSN0271-4302

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2022
KurztitelISCAS 2022
Dauer28 Mai - 1 Juni 2022
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtAustin Hilton
StadtAustin
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-2367-5567/work/168720253

Schlagworte