Combining Self-Retrieval-Augmented Generation with Divide-and-Conquer for Language Model-based Knowledge Base Construction

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Knowledge base construction from language models (LMs) without external retrieval presents unique challenges. Therefore, we present a hybrid, LM-only system for the LM-KBC 2025 challenge [1], which requires constructing knowledge bases using a fixed model (Qwen3-8B) without fine-tuning or external retrieval. Our method combines Self-RAG for general relations with a divide-and-conquer module specialized for awardWonBy. Self-RAG follows a description-first, then extraction-second design with strict output specifications (names-only or one-number-only) to reduce reliance on brittle post-hoc cleaning; numeric answers are normalized to a canonical digit form. The divide-and-conquer module aggregates candidates from constrained, names-only subqueries and filters them with a strict name validator. Evaluation uses the organizers’ official string-matching metric. On the hidden test leaderboard, our system achieves the 2nd place out of 5 participants, and improves macro-F1 from 0.212 (baseline) to 0.405 (+0.194; ∼+91.5% relative improvement), with large gains on companyTradesAtStockExchange (+0.339), personHasCityOfDeath (+0.330), and countryLandBordersCountry (+0.162).

Details

OriginalspracheEnglisch
TitelKBC-LM Workshop and LM-KBC Challenge at ISWC 2025
Redakteure/-innenSimon Razniewski, Jan-Christoph Kalo, Duygu Islakoğlu, Tuan-Phong Nguyen, Bohui Zhang
Seitenumfang20
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band4041
ISSN1613-0073

Sonstiges

Titel4th challenge on Knowledge Base Construction from Pre-trained Language Models
KurztitelLM-KBC 2025
Veranstaltungsnummer4
Beschreibungco-located with the 24th International Semantic Web Conference (ISWC 2025)
Dauer2 November 2025
Webseite
OrtNara Prefectural Convention Center
StadtNara
LandJapan

Externe IDs

ORCID /0000-0002-5410-218X/work/194826582

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Divide-and-Conquer, Knowledge base construction, Language models, LM-KBC, Self-RAG