Combining machine learning with computational fluid dynamics using OpenFOAM and SmartSim
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Combining machine learning (ML) with computational fluid dynamics (CFD) opens many possibilities for improving simulations of technical and natural systems. However, CFD+ML algorithms require exchange of data, synchronization, and calculation on heterogeneous hardware, making their implementation for large-scale problems exceptionally challenging. We provide an effective and scalable solution to developing CFD+ML algorithms using open source software OpenFOAM and SmartSim. SmartSim provides an Orchestrator that significantly simplifies the programming of CFD+ML algorithms enables scalable data exchange between ML and CFD clients. We show how to leverage SmartSim to effectively couple different segments of OpenFOAM with ML, including pre/post-processing applications, function objects, and mesh motion solvers. We additionally provide an OpenFOAM sub-module with examples that can be used as starting points for real-world applications in CFD+ML.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 1831-1850 |
| Seitenumfang | 20 |
| Fachzeitschrift | Meccanica |
| Jahrgang | 60 |
| Ausgabenummer | 6 |
| Frühes Online-Datum | 20 Apr. 2024 |
| Publikationsstatus | Veröffentlicht - Juni 2025 |
| Peer-Review-Status | Ja |
Externe IDs
| RIS | Maric2024 |
|---|---|
| Scopus | 85190780555 |
Schlagworte
Schlagwörter
- Computational Fluid Dynamics, Machine Learning, Workflow