Combined experimental and theoretical study of hydrostatic (He-gas) pressure effects in α-RuCl3

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • B. Wolf - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • D. A.S. Kaib - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • A. Razpopov - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • S. Biswas - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • K. Riedl - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • S. M. Winter - , Johann Wolfgang Goethe-Universität Frankfurt am Main, Wake Forest University (Autor:in)
  • R. Valentí - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Y. Saito - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • S. Hartmann - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • E. Vinokurova - , Institut für Festkörper- und Materialphysik, Sonderforschungsbereich 1143 Korrelierter Magnetismus, Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • T. Doert - , Professur für Anorganische Chemie (II) (AC2) (Autor:in)
  • A. Isaeva - , Leibniz Institute for Solid State and Materials Research Dresden, University of Amsterdam (Autor:in)
  • G. Bastien - , Leibniz Institute for Solid State and Materials Research Dresden, Karlsuniversität Prag (Autor:in)
  • A. U.B. Wolter - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • B. Büchner - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • M. Lang - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

We report a detailed experimental and theoretical study on the effect of hydrostatic pressure on various structural and magnetic aspects of the layered honeycomb antiferromagent α-RuCl3. Through measurements of the magnetic susceptibility χ performed under almost ideal hydrostatic-pressure conditions by using helium as a pressure-transmitting medium, we find that the phase transition to zigzag-type antiferromagnetic order at TN = 7.3 K can be rapidly suppressed to about 6.1 K at a weak pressure of about 94 MPa. A further suppression of TN with increasing pressure is impeded, however, due to the occurrence of a pressure-induced structural transition at p≥ 104 MPa, accompanied by a strong dimerization of Ru-Ru bonds, which gives rise to a collapse of the magnetic susceptibility. Whereas the dimerization transition is strongly first order, the magnetic transition under varying pressure and magnetic field also reveals indications for a weakly first-order transition. We assign this observation to a strong magnetoelastic coupling in this system. Measurements of χ under varying pressure in the paramagnetic regime (T>TN) and before dimerization (p< 100 MPa) reveal a considerable increase of χ with pressure. These experimental observations are consistent with the results of ab initio density functional theory (DFT) calculations on the pressure-dependent structure of α-RuCl3 and the corresponding pressure-dependent magnetic model. We find that pressure strengthens the nearest-neighbor Heisenberg J and off-diagonal anisotropic Γ coupling and simultaneously weakens the Kitaev K and anisotropic Γ′ coupling. Comparative susceptibility measurements on a second crystal showing two consecutive magnetic transitions instead of one, indicating the influence of stacking faults, reveal that by the application of different temperature-pressure protocols the effect of these stacking faults can be temporarily overcome.

Details

OriginalspracheEnglisch
Aufsatznummer134432
FachzeitschriftPhysical Review: B, Condensed Matter and Materials Physics
Jahrgang106
Ausgabenummer13
PublikationsstatusVeröffentlicht - 1 Okt. 2022
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-7523-9313/work/147141989
Scopus 85141473085

Schlagworte