Combinatorial BCL2 Family Expression in Acute Myeloid Leukemia Stem Cells Predicts Clinical Response to Azacitidine/Venetoclax

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexander Waclawiczek - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Aino-Maija Leppä - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Simon Renders - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Karolin Stumpf - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Cecilia Reyneri - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Barbara Betz - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Maike Janssen - , Universitätsklinikum Heidelberg (Autor:in)
  • Rabia Shahswar - , Medizinische Hochschule Hannover (MHH) (Autor:in)
  • Elisa Donato - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Darja Karpova - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Vera Thiel - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Julia M Unglaub - , Universitätsklinikum Heidelberg (Autor:in)
  • Susanna Grabowski - , Universitätsklinikum Heidelberg (Autor:in)
  • Stefanie Gryzik - , Universitätsklinikum Heidelberg (Autor:in)
  • Lisa Vierbaum - , Universitätsklinikum Heidelberg (Autor:in)
  • Richard F Schlenk - , Universitätsklinikum Heidelberg (Autor:in)
  • Christoph Röllig - , Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Michael Hundemer - , Universitätsklinikum Heidelberg (Autor:in)
  • Caroline Pabst - , Universitätsklinikum Heidelberg (Autor:in)
  • Michael Heuser - , Medizinische Hochschule Hannover (MHH) (Autor:in)
  • Simon Raffel - , Universitätsklinikum Heidelberg (Autor:in)
  • Carsten Müller-Tidow - , Universitätsklinikum Heidelberg (Autor:in)
  • Tim Sauer - , Universitätsklinikum Heidelberg (Autor:in)
  • Andreas Trumpp - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

The BCL2 inhibitor venetoclax (VEN) in combination with azacitidine (5-AZA) is currently transforming acute myeloid leukemia (AML) therapy. However, there is a lack of clinically relevant biomarkers that predict response to 5-AZA/VEN. Here, we integrated transcriptomic, proteomic, functional, and clinical data to identify predictors of 5-AZA/VEN response. Although cultured monocytic AML cells displayed upfront resistance, monocytic differentiation was not clinically predictive in our patient cohort. We identified leukemic stem cells (LSC) as primary targets of 5-AZA/VEN whose elimination determined the therapy outcome. LSCs of 5-AZA/VEN-refractory patients displayed perturbed apoptotic dependencies. We developed and validated a flow cytometry-based "Mediators of apoptosis combinatorial score" (MAC-Score) linking the ratio of protein expression of BCL2, BCL-xL, and MCL1 in LSCs. MAC scoring predicts initial response with a positive predictive value of more than 97% associated with increased event-free survival. In summary, combinatorial levels of BCL2 family members in AML-LSCs are a key denominator of response, and MAC scoring reliably predicts patient response to 5-AZA/VEN.

SIGNIFICANCE: Venetoclax/azacitidine treatment has become an alternative to standard chemotherapy for patients with AML. However, prediction of response to treatment is hampered by the lack of clinically useful biomarkers. Here, we present easy-to-implement MAC scoring in LSCs as a novel strategy to predict treatment response and facilitate clinical decision-making.

Details

OriginalspracheEnglisch
Seiten (von - bis)1408-1427
Seitenumfang20
FachzeitschriftCancer discovery
Jahrgang13 (2023)
Ausgabenummer6
PublikationsstatusVeröffentlicht - 2 Juni 2023
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC10236156
Scopus 85160967160

Schlagworte

Schlagwörter

  • Humans, Proteomics, Proto-Oncogene Proteins c-bcl-2/genetics, Leukemia, Myeloid, Acute/drug therapy, Bridged Bicyclo Compounds, Heterocyclic/pharmacology, Azacitidine/pharmacology, Stem Cells/metabolism, Antineoplastic Combined Chemotherapy Protocols/pharmacology

Bibliotheksschlagworte