Coincidence Detection with an Analog Spiking Neuron Exploiting Ferroelectric Polarization

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Paolo Gibertini - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Luca Fehlings - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH, Technische Universität Dresden (Autor:in)
  • Elisabetta Chicca - , University of Groningen (Autor:in)
  • David Kappel - , Ruhr-Universität Bochum (Autor:in)
  • Erika Covi - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)

Abstract

The ability to detect correlated events in the environment is an important feat of biological neural networks. Neuromorphic computing strives to mimic this ability for efficient sensory processing. For this purpose, we propose a HfO2-based ferroelectric capacitor (FeCap)-complementary metal oxide semiconductor (CMOS) leaky integrate-and-fire (LIF) neuron able to detect highly correlated events exploiting two different temporal dynamics. The possibility to exploit two time constants increases the versatility of the neuron and its dynamic adaptation while offering a compact and elegant solution for detection of both transient and sustained coincidences. Moreover, the time constants are in biologically relevant time scales, which makes the neuron suitable to solve real-time tasks such as keyword spotting or sensory processing. The proposed FeCap-based LIF (FeLIF) neuron enriches the dynamic of a standard LIF neuron fostering the development of advanced event-based analog neuromorphic hardware.

Details

OriginalspracheEnglisch
TitelISCAS 2024 - IEEE International Symposium on Circuits and Systems
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350330991
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - IEEE International Symposium on Circuits and Systems
ISSN0271-4310

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2024
UntertitelCircuits and Systems for Sustainable Development
KurztitelISCAS 2024
Dauer19 - 22 Mai 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtResorts World Convention Centre
StadtSingapore
LandSingapur

Externe IDs

ORCID /0000-0003-3814-0378/work/164619840

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • artificial neuron, correlation detection, ferroelectric capacitor, Neuromorphic computing, SNN