Coincidence Detection with an Analog Spiking Neuron Exploiting Ferroelectric Polarization
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The ability to detect correlated events in the environment is an important feat of biological neural networks. Neuromorphic computing strives to mimic this ability for efficient sensory processing. For this purpose, we propose a HfO2-based ferroelectric capacitor (FeCap)-complementary metal oxide semiconductor (CMOS) leaky integrate-and-fire (LIF) neuron able to detect highly correlated events exploiting two different temporal dynamics. The possibility to exploit two time constants increases the versatility of the neuron and its dynamic adaptation while offering a compact and elegant solution for detection of both transient and sustained coincidences. Moreover, the time constants are in biologically relevant time scales, which makes the neuron suitable to solve real-time tasks such as keyword spotting or sensory processing. The proposed FeCap-based LIF (FeLIF) neuron enriches the dynamic of a standard LIF neuron fostering the development of advanced event-based analog neuromorphic hardware.
Details
Originalsprache | Englisch |
---|---|
Titel | ISCAS 2024 - IEEE International Symposium on Circuits and Systems |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
ISBN (elektronisch) | 9798350330991 |
Publikationsstatus | Veröffentlicht - 2024 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
ISSN | 0271-4310 |
Konferenz
Titel | IEEE International Symposium on Circuits and Systems 2024 |
---|---|
Untertitel | Circuits and Systems for Sustainable Development |
Kurztitel | ISCAS 2024 |
Dauer | 19 - 22 Mai 2024 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Resorts World Convention Centre |
Stadt | Singapore |
Land | Singapur |
Externe IDs
ORCID | /0000-0003-3814-0378/work/164619840 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- artificial neuron, correlation detection, ferroelectric capacitor, Neuromorphic computing, SNN