Code and Test Generation for I4.0 State Machines with LLM-based Diagram Recognition

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

In the context of Industry 4.0, the automatic code and test generation from state diagrams embedded in specifications is a critical challenge for software correctness. In this paper we present an approach that leverages Large Language Models (LLMs) for the recognition of state diagrams to generate code and unit tests automatically. We compare the performance of LLMs with traditional computer vision models, highlighting the advantages of LLMs in terms of generalization and simplicity of setup. The results on two prominent industrial communication protocols, PROFINET and OPC UA, demonstrate the applicability of the approach, achieving significant reductions in manual effort and improving the accuracy of code and test generation.

Details

OriginalspracheEnglisch
Titel2025 IEEE 21st International Conference on Factory Communication Systems (WFCS)
Redakteure/-innenFrank Golatowski, Stefano Scanzio, Mohammad Ashjaei, Ramez Daoud, Pedro Santos, Hassanein Amer
Herausgeber (Verlag)IEEE Industrial Electronics Society
Seitenumfang8
ISBN (elektronisch)979-8-3315-3005-1
ISBN (Print)979-8-3315-3006-8
PublikationsstatusVeröffentlicht - 13 Juni 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Workshop on Factory Communication Systems (WFCS)
ISSN2835-8511

Konferenz

Titel21st IEEE International Conference on Factory Communication Systems
KurztitelWFCS 2025
Veranstaltungsnummer21
Dauer10 - 13 Juni 2025
Webseite
OrtUniversität Rostock
StadtRostock
LandDeutschland

Externe IDs

ORCID /0000-0002-4646-4455/work/188438628
ORCID /0009-0000-2432-5529/work/188438774
Mendeley c64406be-fae4-35d2-8b71-334ec722b0e1
Scopus 105012249550

Schlagworte

Schlagwörter

  • Codes, Computer vision, Fourth Industrial Revolution, Industrial communication, Large language models, Manuals, Production facilities, Protocols, Software, Test pattern generators, Code generation, Diagram recognition, Industry 4.0, LLM, Large Language Model, Test case generation