Coaligning arrays of air-sensitive single crystals for inelastic neutron scattering experiments

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • G. Friemel - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)
  • M. Ohl - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)
  • J. T. Park - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)
  • B. Keimer - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)
  • D. S. Inosov - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Autor:in)

Abstract

The immense achievements of inelastic neutron scattering (INS) in recent years on the way to understanding the mechanism of high-temperature superconductivity were to a great extent enabled by the progress in fabricating large single-crystalline samples or coaligned mosaics consisting of up to several hundreds of individual single crystals. With the recent discovery of unconventional superconductivity in iron-based compounds, many of which can only be synthesized as relatively small crystals that rapidly decompose or deteriorate in air, we were faced with the technical challenge of preparing coaligned single-crystal arrays without exposing the samples to the ambient atmosphere. Here we describe a possible solution to this problem, which we have successfully employed to coalign both iron-pnictide and iron-chalcogenide single crystals in an argon atmosphere using a real-time digital x-ray Laue backscattering camera.

Details

OriginalspracheEnglisch
Seitenumfang6
FachzeitschriftJournal of Physics Conference Series
PublikationsstatusVeröffentlicht - 2013
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel10th International Conference on Materials and Mechanisms of Superconductivity (M2S)
Dauer29 Juli - 3 August 2012
StadtWashington

Externe IDs

Scopus 84883021829

Schlagworte

Schlagwörter

  • MAGNETIC RESONANT MODE, SPIN EXCITATIONS, STATE