Classification of spectroscopical imagery by combining spatial and spectral information: The SSC method

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Tom Hornstra - , Technische Universität Delft (Autor:in)
  • Hans Gerd Maas - , Technische Universität Delft (Autor:in)
  • Steven De Jong - , Wageningen University & Research (WUR) (Autor:in)

Abstract

Classification of remotely sensed images is often based on assigning classes on a 'per-pixel' basis and therefore ignoring spatial information captured by the image. In this paper a method is proposed that combines spatial and spectral information in two steps. Spatial information is first extracted by segmentation: spectral homogeneous regions in the image are identified on the basis of similarity of the entire spectral shape from visible to shortwave infrared. These homogeneous areas are classified and next, this information is used to classify the remaining heterogeneous pixels. The method is applied and validated on DAIS images acquired over an area covered with natural vegetation and agricultural activities in southern France. Results indicate significant improvements of classification results compared to traditional per-pixel classifiers.

Details

OriginalspracheEnglisch
Seiten (von - bis)550-558
Seitenumfang9
FachzeitschriftInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Jahrgang33
PublikationsstatusVeröffentlicht - 2000
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel19th International Congress for Photogrammetry and Remote Sensing, ISPRS 2000
Dauer16 - 23 Juli 2000
StadtAmsterdam
LandNiederlande

Schlagworte

Schlagwörter

  • Classification, Hyperspectral, Image processing, Segmentation