Charge Transport through Biomolecular Wires in a Solvent: Bridging Molecular Dynamics and Model Hamiltonian Approaches

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We present a hybrid method based on a combination of classical molecular dynamics simulations, quantum-chemical calculations, and a model Hamiltonian approach to describe charge transport through biomolecular wires with variable lengths in presence of a solvent. The core of our approach consists in a mapping of the biomolecular electronic structure, as obtained from density-functional based tight-binding calculations of molecular structures along molecular dynamics trajectories, onto a low-dimensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuation effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the case of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.

Details

OriginalspracheEnglisch
Aufsatznummer208102
Seitenumfang4
FachzeitschriftPhysical review letters
Jahrgang102
Ausgabenummer20
PublikationsstatusVeröffentlicht - 22 Mai 2009
Peer-Review-StatusJa

Externe IDs

PubMed 19519078
ORCID /0000-0001-8121-8041/work/142240850

Schlagworte

Schlagwörter

  • Single dna-molecules, Tight-binding method, Hole transfer, Electrical-transport, Migration, Poly(da)-poly(dt), Poly(dg)-poly(dc), Fluctuations, Simulations, Environment

Bibliotheksschlagworte