Characterization of RNA content in individual phase-separated coacervate microdroplets

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Damian Wollny - , Max Planck Institute for Evolutionary Anthropology, Friedrich-Schiller-Universität Jena, Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (Autor:in)
  • Benjamin Vernot - , Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Jie Wang - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Maria Hondele - , ETH Zurich, Universität Basel (Autor:in)
  • Aram Safrastyan - , Friedrich-Schiller-Universität Jena, Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (Autor:in)
  • Franziska Aron - , Friedrich-Schiller-Universität Jena, Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (Autor:in)
  • Julia Micheel - , Friedrich-Schiller-Universität Jena, Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (Autor:in)
  • Zhisong He - , Universität Basel (Autor:in)
  • Anthony Hyman - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Karsten Weis - , ETH Zurich (Autor:in)
  • J. Gray Camp - , F. Hoffmann-La Roche AG, Universität Basel (Autor:in)
  • T. Y.Dora Tang - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Barbara Treutlein - , Max Planck Institute for Evolutionary Anthropology, ETH Zurich (Autor:in)

Abstract

Condensates formed by complex coacervation are hypothesized to have played a crucial part during the origin-of-life. In living cells, condensation organizes biomolecules into a wide range of membraneless compartments. Although RNA is a key component of biological condensates and the central component of the RNA world hypothesis, little is known about what determines RNA accumulation in condensates and to which extend single condensates differ in their RNA composition. To address this, we developed an approach to read the RNA content from single synthetic and protein-based condensates using high-throughput sequencing. We find that certain RNAs efficiently accumulate in condensates. These RNAs are strongly enriched in sequence motifs which show high sequence similarity to short interspersed elements (SINEs). We observe similar results for protein-derived condensates, demonstrating applicability across different in vitro reconstituted membraneless organelles. Thus, our results provide a new inroad to explore the RNA content of phase-separated droplets at single condensate resolution.

Details

OriginalspracheEnglisch
Aufsatznummer2626
FachzeitschriftNature communications
Jahrgang13
Ausgabenummer1
PublikationsstatusVeröffentlicht - 12 Mai 2022
Peer-Review-StatusJa

Externe IDs

PubMed 35551426