Challenges for context-driven time series forecasting

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Predicting time series is a crucial task for organizations, since decisions are often based on uncertain information. Many forecasting models are designed from a generic statistical point of view. However, each real-world application requires domain-specific adaptations to obtain high-quality results. All such specifics are summarized by the term of context. In contrast to current approaches, we want to integrate context as the primary driver in the forecasting process. We introduce context-driven time series forecasting focusing on two exemplary domains: renewable energy and sparse sales data. In view of this, we discuss the challenge of context integration in the individual process steps.

Details

OriginalspracheEnglisch
Aufsatznummer5
FachzeitschriftJournal of Data and Information Quality
Jahrgang7
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 19 Apr. 2016
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8107-2775/work/198592306

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Forecast evaluation, Model selection, Renewable energy, Sales data, Uncertain data