Challenges for context-driven time series forecasting
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Predicting time series is a crucial task for organizations, since decisions are often based on uncertain information. Many forecasting models are designed from a generic statistical point of view. However, each real-world application requires domain-specific adaptations to obtain high-quality results. All such specifics are summarized by the term of context. In contrast to current approaches, we want to integrate context as the primary driver in the forecasting process. We introduce context-driven time series forecasting focusing on two exemplary domains: renewable energy and sparse sales data. In view of this, we discuss the challenge of context integration in the individual process steps.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 5 |
| Fachzeitschrift | Journal of Data and Information Quality |
| Jahrgang | 7 |
| Ausgabenummer | 1-2 |
| Publikationsstatus | Veröffentlicht - 19 Apr. 2016 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0001-8107-2775/work/198592306 |
|---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Forecast evaluation, Model selection, Renewable energy, Sales data, Uncertain data