Cellular Neural Networks with nearly arbitrary nonlinear weight functions
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we present Cellular Neural Networks (CNN) with a new type of nonlinear weight functions. Instead of representing a weight function by a n-th order polynom, we propose tabulated functions by using a cubic spline interpolation procedure. These CNN are considered for the problem of modelling nonlinear systems, which are characterized by partial differential equations (PDE). Therefore we propose a training algorithm to adjust the behaviour of CNN solutions to the solutions of a given nonlinear system. Results are given for the Φ4-equation and the achieved accuracy is compared to the approximation accuracy of solutions obtained by a direct spatial discretization of the Φ4-equation.
Details
Originalsprache | Englisch |
---|---|
Seiten | 171-176 |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - 2000 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Network and their Applications (CNNA 2000) |
---|---|
Dauer | 23 - 25 Mai 2000 |
Stadt | Catania, Italy |
Externe IDs
ORCID | /0000-0001-7436-0103/work/142240261 |
---|