Cellular Neural Networks with nearly arbitrary nonlinear weight functions

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • A. Loncar - , Universitätsklinikum Frankfurt (Autor:in)
  • R. Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

In this paper we present Cellular Neural Networks (CNN) with a new type of nonlinear weight functions. Instead of representing a weight function by a n-th order polynom, we propose tabulated functions by using a cubic spline interpolation procedure. These CNN are considered for the problem of modelling nonlinear systems, which are characterized by partial differential equations (PDE). Therefore we propose a training algorithm to adjust the behaviour of CNN solutions to the solutions of a given nonlinear system. Results are given for the Φ4-equation and the achieved accuracy is compared to the approximation accuracy of solutions obtained by a direct spatial discretization of the Φ4-equation.

Details

OriginalspracheEnglisch
Seiten171-176
Seitenumfang6
PublikationsstatusVeröffentlicht - 2000
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelProceedings of the 2000 6th IEEE International Workshop on Cellular Neural Network and their Applications (CNNA 2000)
Dauer23 - 25 Mai 2000
StadtCatania, Italy

Externe IDs

ORCID /0000-0001-7436-0103/work/142240261

Schlagworte

ASJC Scopus Sachgebiete