Cardinality estimation in ETL processes
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The cardinality estimation in ETL processes is particularly difficult. Aside from the well-known SQL operators, which are also used in ETL processes, there are a variety of operators without exact counterparts in the relational world. In addition to those, we find operators that support very specific data integration aspects. For such operators, there are no well-examined statistic approaches for cardinality estimations. Therefore, we propose a black-box approach and estimate the cardinality using a set of statistic models for each operator. We discuss different model granularities and develop an adaptive cardinality estimation framework for ETL processes. We map the abstract model operators to specific statistic learning approaches (regression, decision trees, support vector machines, etc.) and evaluate our cardinality estimations in an extensive experimental study.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | DOLAP '09: Proceedings of the ACM twelfth international workshop on Data warehousing and OLAP |
| Seiten | 57-64 |
| Seitenumfang | 8 |
| Publikationsstatus | Veröffentlicht - 2009 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 12th ACM International Workshop on Data Warehousing and OLAP, DOLAP'09, Co-located with the 18th ACM International Conference on Information and Knowledge Management, CIKM 2009 |
|---|---|
| Dauer | 2 - 6 November 2009 |
| Stadt | Hong Kong |
| Land | China |
Externe IDs
| ORCID | /0000-0001-8107-2775/work/200630402 |
|---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- Cardinality estimation, ETL, Real-time data warehouse