Capacity-Achieving Input Distributions: Algorithmic Computability and Approximability

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Holger Boche - , Technische Universität München (Autor:in)
  • Rafael F. Schaefer - , Universität Siegen (Autor:in)
  • H. Vincent Poor - , Princeton University (Autor:in)

Abstract

The capacity of a channel can usually be characterized as a maximization of certain entropic quantities. From a practical point of view it is of crucial interest to not only compute the capacity value, but also to find the corresponding optimizer, i.e., the capacity-achieving input distribution. This paper addresses the general question of whether or not it is possible to find algorithms that can compute the optimal input distribution depending on the channel. For this purpose, the concept of Turing machines is used which provides the fundamental performance limits of digital computers and therewith fully specifies which tasks are algorithmically feasible in principle. It is shown that it is impossible to algorithmically compute the capacity-achieving input distribution, where the channel is given as an input to the algorithm or Turing machine. Finally, it is further shown that it is also impossible to algorithmically approximate these input distributions.

Details

OriginalspracheEnglisch
Titel2022 IEEE International Symposium on Information Theory, ISIT 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2774-2779
Seitenumfang6
ISBN (elektronisch)978-1-6654-2159-1
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Symposium on Information Theory
Band2022-June
ISSN2157-8095

Konferenz

Titel2022 IEEE International Symposium on Information Theory, ISIT 2022
Dauer26 Juni - 1 Juli 2022
StadtEspoo
LandFinnland

Externe IDs

ORCID /0000-0002-1702-9075/work/165878339