Can surgeons trust AI? Perspectives on machine learning in surgery and the importance of eXplainable Artificial Intelligence (XAI)
Publikation: Beitrag in Fachzeitschrift › Übersichtsartikel (Review) › Beigetragen › Begutachtung
Beitragende
Abstract
PURPOSE: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery. METHODS: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws. RESULTS: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models. CONCLUSION: Transparency and interpretability are essential for the effective integration of AI models into clinical practice.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 53 |
| Fachzeitschrift | Langenbeck's archives of surgery |
| Jahrgang | 410 |
| Ausgabenummer | 1 |
| Publikationsstatus | Veröffentlicht - 28 Jan. 2025 |
| Peer-Review-Status | Ja |
Externe IDs
| PubMed | 39873858 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Artificial intelligence, Explainable artificial intelligence, Machine learning, Minimally invasive surgery