Can surgeons trust AI? Perspectives on machine learning in surgery and the importance of eXplainable Artificial Intelligence (XAI)

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

Abstract

PURPOSE: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery. METHODS: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws. RESULTS: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models. CONCLUSION: Transparency and interpretability are essential for the effective integration of AI models into clinical practice.

Details

OriginalspracheEnglisch
Aufsatznummer53
FachzeitschriftLangenbeck's archives of surgery
Jahrgang410
Ausgabenummer1
PublikationsstatusVeröffentlicht - 28 Jan. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 39873858

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Artificial intelligence, Explainable artificial intelligence, Machine learning, Minimally invasive surgery